Exercise 1.30

Let the angle θ be the angle that the vector \overrightarrow{A} makes with the +x-axis, measured counterclockwise from that axis. Find the angle θ for a vector that has the following components: (a) $A_x = 2.00$ m, $A_y = -1.00$ m; (b) $A_x = 2.00$ m, $A_y = 1.00$ m; (c) $A_x = -2.00$ m, $A_y = 1.00$ m; (d) $A_x = -2.00$ m, $A_y = -1.00$ m.

Solution

Part (a)

Plot the given vector, $\vec{A} = \langle A_x, A_y \rangle = \langle 2.00, -1.00 \rangle$ m.

Determine α , the angle that \overrightarrow{A} is under the *x*-axis.

$$\tan \alpha = \frac{1.00}{2.00} \quad \rightarrow \quad \alpha = \tan^{-1}\left(\frac{1}{2}\right) \approx 26.6^{\circ}$$

The desired angle θ is 360° minus this angle.

$$\theta = 360 - \alpha \approx 333^{\circ}$$

Part (b)

Plot the given vector, $\overrightarrow{A} = \langle A_x, A_y \rangle = \langle 2.00, 1.00 \rangle$ m.

Determine θ , the desired angle.

$$\tan \theta = \frac{1.00}{2.00} \quad \rightarrow \quad \theta = \tan^{-1}\left(\frac{1}{2}\right) \approx 26.6^{\circ}$$

Part (c)

Plot the given vector, $\overrightarrow{A} = \langle A_x, A_y \rangle = \langle -2.00, 1.00 \rangle$ m.

Determine α , the angle that \overrightarrow{A} is over the -x-axis.

$$\tan \alpha = \frac{1.00}{2.00} \quad \rightarrow \quad \alpha = \tan^{-1}\left(\frac{1}{2}\right) \approx 26.6^{\circ}$$

The desired angle θ is 180° minus this angle.

$$\theta = 180 - \alpha \approx 153^\circ$$

www.stemjock.com

Part (d)

Plot the given vector, $\overrightarrow{A} = \langle A_x, A_y \rangle = \langle -2.00, -1.00 \rangle$ m.

Determine α , the angle that \overrightarrow{A} is under the -x-axis.

$$\tan \alpha = \frac{1.00}{2.00} \quad \rightarrow \quad \alpha = \tan^{-1}\left(\frac{1}{2}\right) \approx 26.6^{\circ}$$

The desired angle θ is 180° plus this angle.

$$\theta = 180 + \alpha \approx 207^\circ$$