Exercise 1.30

Let the angle θ be the angle that the vector $\overrightarrow{\boldsymbol{A}}$ makes with the $+x$-axis, measured counterclockwise from that axis. Find the angle θ for a vector that has the following components: (a) $A_{x}=2.00 \mathrm{~m}, A_{y}=-1.00 \mathrm{~m}$; (b) $A_{x}=2.00 \mathrm{~m}, A_{y}=1.00 \mathrm{~m}$; (c) $A_{x}=-2.00 \mathrm{~m}, A_{y}=1.00 \mathrm{~m}$; (d) $A_{x}=-2.00 \mathrm{~m}, A_{y}=-1.00 \mathrm{~m}$.

Solution

Part (a)
Plot the given vector, $\overrightarrow{\boldsymbol{A}}=\left\langle A_{x}, A_{y}\right\rangle=\langle 2.00,-1.00\rangle \mathrm{m}$.

Determine α, the angle that $\overrightarrow{\boldsymbol{A}}$ is under the x-axis.

$$
\tan \alpha=\frac{1.00}{2.00} \quad \rightarrow \quad \alpha=\tan ^{-1}\left(\frac{1}{2}\right) \approx 26.6^{\circ}
$$

The desired angle θ is 360° minus this angle.

$$
\theta=360-\alpha \approx 333^{\circ}
$$

Part (b)

Plot the given vector, $\overrightarrow{\boldsymbol{A}}=\left\langle A_{x}, A_{y}\right\rangle=\langle 2.00,1.00\rangle \mathrm{m}$.

Determine θ, the desired angle.

$$
\tan \theta=\frac{1.00}{2.00} \quad \rightarrow \quad \theta=\tan ^{-1}\left(\frac{1}{2}\right) \approx 26.6^{\circ}
$$

Part (c)

Plot the given vector, $\overrightarrow{\boldsymbol{A}}=\left\langle A_{x}, A_{y}\right\rangle=\langle-2.00,1.00\rangle \mathrm{m}$.

Determine α, the angle that $\overrightarrow{\boldsymbol{A}}$ is over the $-x$-axis.

$$
\tan \alpha=\frac{1.00}{2.00} \quad \rightarrow \quad \alpha=\tan ^{-1}\left(\frac{1}{2}\right) \approx 26.6^{\circ}
$$

The desired angle θ is 180° minus this angle.

$$
\theta=180-\alpha \approx 153^{\circ}
$$

Part (d)

Plot the given vector, $\overrightarrow{\boldsymbol{A}}=\left\langle A_{x}, A_{y}\right\rangle=\langle-2.00,-1.00\rangle \mathrm{m}$.

Determine α, the angle that $\overrightarrow{\boldsymbol{A}}$ is under the $-x$-axis.

$$
\tan \alpha=\frac{1.00}{2.00} \quad \rightarrow \quad \alpha=\tan ^{-1}\left(\frac{1}{2}\right) \approx 26.6^{\circ}
$$

The desired angle θ is 180° plus this angle.

$$
\theta=180+\alpha \approx 207^{\circ}
$$

